DESIGN OF FORCED CONVECTION HEAT TRANSFER RIG

BY

UDOETTE PAUL AKPAN

ME/2008/105

PROJECT SUMMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF BACHELOR OF ENGINEERING (B. ENG.) DEGREE IN MECHANICAL ENGINEERING.

DEPARTMENT OF MECHANICAL ENGINEERING

FACULTY OF ENGINEERING

CARITAS UNIVERSITY AMORJI-NIKE ENUGU

AUGUST 2013

CERTIFICATION PAGE

This is to certify that this project was executed by Udoette Paul Akpan with the Reg. No; ME/2008/105

Engr. (Mrs) Mary Onyia Date Project supervisor Date

Prof. A. O. Odukwe External Examiner

Date

DEDICATION

This project is dedicated to Almighty God for the strength and will he gave to me right from the beginning of this project to the finish. To my lovely parents (Mr and Mrs Paul Jumbo Akpan) for their all round support throughout my educational carrier.

ACKNOWLEDGEMENT

The merit of this work is beyond my own contribution. Primary among those who contributed to whatever success this work can boast of is my project supervisor, for her dynamism, supervision and constructive criticism. Also lecturers in Mechanical Engineering Department like Engr. S.O Ezenwelu, Engr. Modetus, Engr. Dr. Nwankwoejike , Engr. Dr. A. Ujam for the foundation they gave me to be able to chart this course to this extent.

I deeply acknowledge the efforts of Engr. Ben U. Iyida who since he became the Head of Department has made positive impart in the upliftment of the department.

I specially acknowledge my Dean Professor S. N. Ojobor who has been like a father and a mentor not only to me but all the students of Mechanical Engineering Department thanks for what you have thought me so far and I am proud of you.

Finally, I acknowledge my lovely parent Mr. and Mrs. Paul Jumbo Akpan, my brothers and sisters for their encouragement and support in all aspects of my life, may God bless you all.

iii

ABSTRACT

This project report contains experimental illustration of forced convective heat transfer rig, which consist of a tube, through which air is sent in by a blower. The test section consists of a long electrical surface heater on the tube which serves as a constant heat flux source on the flowing medium. The inlet and outlet temperature of the flowing medium are measured by thermocouple and also the temperature at several locations along the surface heater from which an average temperature can be obtained. An orifice meter is used to measure the airflow rate with a 'U' tube water manometer. An ammeter and voltmeter are provided to measure the power input to the heater. A power regulator is provided to vary the power input to heater. A valve is provided to regulate the flow rate of air. The air being generated by the blower is being passed through a hose connected to a mild steel pipe. The total heat input rate to the air is calculated using $q_t = MC_P\Delta t$

Where;

M = Mass flow rate

 C_p = Specific heat

 Δt = Temperature change of the air across the heating section Hence, the forced convection heat transfer coefficient is obtained using $q_t = h.A\Delta T$

Where;

 $\Delta T = \log$ mean temperature across the heating section

The result of the convective heat transfer of $h = 0.05 \text{ W/m}^2\text{k}$ was obtained

TABLE OF CONTENT

Cover Page	
Title page	i
Certification page	ii
Dedication	iii
Acknowledgement	iv
Abstract	V
List of figures	vi
List of Tables	vii
List of graph	viii

CHAPTER ONE

1.0 Introduction	1
1.1 Modes of heat Transfer	1
1.2 Aims and Objectives	7
1.3 Application and uses	8

CHAPTER TWO

LITERATURE REVIEW

2.0 Previous works on forced convection studies	10
2.1 Purposes of the study	11
2.2 Basic laws Governing Heat Transfers	13
2.3 Heat Transfer by Convection	14
2.4 Determination of Coefficient of Heat Transfer	
by convection	15
CHAPTER THREE	
3.0 Analysis of Design	18

3.1 Description of Design	18
3.1.1 Methodology	19
3.2. Steps Considered for the Designing of forced convective	
heat transfer rig.	28
CHAPTER FOUR	
4.0 Experimental procedure	31
4.1 Material Methods	31
4.1.1 Consideration for Material Selection	32
4.1.2 Selecting materials for the test rig	34
4.2 Forced convection Data and Calculations	35
CHAPTER FIVE	
5.0 Analysis Of Result	42
5.1 Fourier's Laws of heat Conduction	42
5.2 Thermal Conductivity of Material	44
5.3 Determination of Quality of Heat Entering the Hot Pipe	45
5.4 Determination of Temperature	46
CHAPTER SIX	
6.0 Observation	59
6.1 Suggestion for improvement	59
6.2 Challenges Encountered	60
6.3 Recommendation	60
CHAPTER SEVEN	
7.0 Conclusion	61
Reference	62

List of Figure

Pages

Figure 1	16
Figure 2	
Figure 3	
Figure 4	
Figure 5	

List of graphs	pages
Graph 1	56
Graph 2	58